Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles.
نویسندگان
چکیده
The mitochondrial cytochrome bc(1) complex (ubiquinol/cytochrome c oxidoreductase) is generally thought to generate superoxide anion that participates in cell signaling and contributes to cellular damage in aging and degenerative disease. However, the isolated, detergent-solubilized bc(1) complex does not generate measurable amounts of superoxide except when inhibited by antimycin. In addition, indirect measurements of superoxide production by cells and isolated mitochondria have not clearly resolved the contribution of the bc(1) complex to the generation of superoxide by mitochondria in vivo, nor did they establish the effect, if any, of membrane potential on superoxide formation by this enzyme complex. In this study we show that the yeast cytochrome bc(1) complex does generate significant amounts of superoxide when reconstituted into phospholipid vesicles. The rate of superoxide generation by the reconstituted bc(1) complex increased exponentially with increased magnitude of the membrane potential, a finding that is compatible with the suggestion that membrane potential inhibits electron transfer from the cytochrome b(L) to b(H) hemes, thereby promoting the formation of a ubisemiquinone radical that interacts with oxygen to generate superoxide. When the membrane potential was further increased, by the addition of nigericin or by the imposition of a diffusion potential, the rate of generation of superoxide was further accelerated and approached the rate obtained with antimycin. These findings suggest that the bc(1) complex may contribute significantly to superoxide generation by mitochondria in vivo, and that the rate of superoxide generation can be controlled by modulation of the mitochondrial membrane potential.
منابع مشابه
Reaction mechanism of superoxide generation during ubiquinol oxidation by the cytochrome bc1 complex.
In addition to its main functions of electron transfer and proton translocation, the cytochrome bc(1) complex (bc(1)) also catalyzes superoxide anion (O(2)(*)) generation upon oxidation of ubiquinol in the presence of molecular oxygen. The reaction mechanism of superoxide generation by bc(1) remains elusive. The maximum O(2)(*) generation activity is observed when the complex is inhibited by an...
متن کاملChapter 25 Analysis of electron transfer and superoxide generation in the cytochrome bc1 complex.
During the electron transfer through the cytochrome bc(1) complex (ubiquinol-cytochrome c oxidoreductase or complex III), protons are translocated across the membrane, and production of superoxide anion radicals (O(2)(*-)) is observed. The bc(1) complex is purified from broken mitochondrial preparation prepared from frozen heart muscles by repeated detergent solubilization and salt fractionatio...
متن کاملControl of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles.
The kinetics of electron transfer between cytochrome-c oxidase and ruthenium hexamine has been characterized using the native enzyme or its cyanide complex either solubilized by detergent (soluble cytochrome oxidase) or reconstituted into artificial phospholipid vesicles (cytochrome oxidase-containing vesicles). Ru(NH3)2+6 (Ru(II] reduces oxidized cytochrome a, following (by-and-large) bimolecu...
متن کاملThe cytochrome bc1 complex: function in the context of structure.
The bc1 complexes are intrinsic membrane proteins that catalyze the oxidation of ubihydroquinone and the reduction of cytochrome c in mitochondrial respiratory chains and bacterial photosynthetic and respiratory chains. The bc1 complex operates through a Q-cycle mechanism that couples electron transfer to generation of the proton gradient that drives ATP synthesis. Genetic defects leading to mu...
متن کاملTraffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal.
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 29 شماره
صفحات -
تاریخ انتشار 2009